Transcription yield of fully 2′-modified RNA can be increased by the addition of thermostabilizing mutations to T7 RNA polymerase mutants

نویسندگان

  • Adam J. Meyer
  • Daniel J. Garry
  • Bradley Hall
  • Michelle M. Byrom
  • Hannah G. McDonald
  • Xu Yang
  • Y. Whitney Yin
  • Andrew D. Ellington
چکیده

On average, mutations are deleterious to proteins. Mutations conferring new function to a protein often come at the expense of protein folding or stability, reducing overall activity. Over the years, a panel of T7 RNA polymerases have been designed or evolved to accept nucleotides with modified ribose moieties. These modified RNAs have proven useful, especially in vivo, but the transcriptional yields tend to be quite low. Here we show that mutations previously shown to increase the thermal tolerance of T7 RNA polymerase can increase the activity of mutants with expanded substrate range. The resulting polymerase mutants can be used to generate 2'-O-methyl modified RNA with yields much higher than enzymes currently employed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inadequate inhibition of host RNA polymerase restricts T7 bacteriophage growth on hosts overexpressing udk.

Overexpression of udk, an Escherichia coli gene encoding a uridine/cytidine kinase, interferes with T7 bacteriophage growth. We show here that inhibition of T7 phage growth by udk overexpression can be overcome by inhibition of host RNA polymerase. Overexpression of gene 2, whose product inhibits host RNA polymerase, restores T7 phage growth on hosts overexpressing udk. In addition, rifampicin,...

متن کامل

Construction of a Minigenome Rescue System for Measles Virus, AIK-c Strain

Background:In the recent decade, the reverse genetics method has been broadly used for rescue of negative-stranded RNA viruses from cDNA or viral minigenomes. This technique has been applied to study different steps in virus replication and virus-host interactions. Reverse genetics could also be implemented for design of new vaccines. The T7 RNA polymerase activity as well as virus (nucleocapsi...

متن کامل

Synthesis of bacteriophage-coded gene products during infection of Escherichia coli with amber mutants of T3 and T7 defective in gene 1.

During nonpermissive infection by a T7 amber mutant in gene 1 (phage RNA polymerase-deficient), synthesis of the products of the phage genes 3 (endonuclease), 3, 5 (lysozyme), 5 (DNA polymerase), and 17 (serum blocking power) was shown to occur at about half the rate as during wild-type infection. This relatively high rate of expression of "late" genes (transcribed normally by the phage RNA pol...

متن کامل

Construction of an eGFP Expression Plasmid under Control of T7 Promoter and IRES Sequence for Assay of T7 RNA Polymerase Activity in Mammalian Cell Lines

BACKGROUND Recently, the use of T7 RNA polymerase instead of other viral and cellular promoters is increasing due to high efficacy of transcription in the cell cytoplasm by this polymerase. In order to translate the transcripts produced by T7 RNA polymerase in mammalian cell lines, it is necessary to include Internal Ribosome Entry Site (IRES) sequences. In addition, if sequence of poly A signa...

متن کامل

The challenge of getting a high quality of RNA from oocyte for gene expression study

The extraction of intact RNA from oocyte is quite challenging and time-consuming. A standard protocol using commercial RNA extraction kit, yields a low quantity of RNA in oocytes. In the past, several attempts in getting RNA for gene expression study ended up with a few different modified methods. Extraction of high-quality RNA from oocyte is important before further downstream analyses such as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2015